Table 2. Estrogen receptor in uteri of congenic mice

Strain	H-2	Estrogen receptor*	K _d **		
C3H/HeJ	k	142	0.8		
C3H.NB/J	р	161	1.9		
C3H.SW/J	ъ̂	120	0.8		
B10.D2/J	d	69	1.6		
B10.Br/J	k	171	0.6		
C57BL/10J	b	27	1.3		

^{* &}lt;sup>3</sup>H-estradiol bound, expressed in fmoles/mg cytosol protein (pool of 10-15 uteri). ** Equilibrium dissociation constant (moles/1 × 10^{-10}).

relatively low estrogen receptor values (e.g., C57BL/6J, C57BL/10J, and SM/J) and some had high values (e.g., SJL/J, AKR/J, and DBA/1J) however, there was no clearcut correlation with the H-2 genotype. The values of the estradiol receptor in several congenic strains, i.e., which differ from each other only at the H-2 locus but otherwise have the same genetic background, suggested an association with H-2 since B10.D2, B10.Br, and C57BL/10J mice, which all have the same genetic background, had different levels of estradiol receptor (table 2). The K_d was in the same range of 10^{-10} moles/l for all the strains investigated. Discussion. The total level of cytosol protein binding ³Hcortisol in the palate was found to correlate with the H-2 genotype, hence a product of a gene near or in the H-2 locus seemed to be the glucocorticoid receptor7. However, the H-2 was not the sole determinant of ${}^{3}H$ -cortisol receptor level because C3H/HeJ and CBA/J mice, both of $H-2^{k}$ genotype, had different receptor levels. The findings presented here suggested an influence of H-2 locus on the level of available binding sites for estradiol in mouse uteri. We did not measure the level of estradiol in the circulation of various strains of mice. If this level is influenced by the H-2locus similar to the influence on the testosterone level⁵, then its possible influence on the uterine estrogen receptor could be less evident in our assay on intact animals. The individual values of estrogen receptors for each animal within the same strain were assumed to be similar; therefore uteri from 10-15 mice were pooled. The estrous cycle can influence the estrogen binding in uterus of rats¹². However, there are controversial reports on the concentration of estrogen receptor in the uteri of rats in different periods of the cycle: increase in proestrus¹³, decrease in proestrus¹⁴ or no significant changes in the level of estrogen receptor throughout the cycle¹⁵. It is known that pheromones, excreted by males, cause synchronous estrus in mice¹⁶, therefore we kept the female mice in the proximity of males for a week before the experiments.

Our results suggest an influence of the H-2 locus on the amount of estrogen receptor in the mouse uterus. Genetic control of various proteins without a linkage with the major histocompatibility locus is well-known. For example, a genetic variation in male mouse kidney β -glucuronidase activity, not linked to the H-2 locus, was described 17. Further studies of mice in different periods of the estrous cycle as well as studies in individual inbred rats should shed more light on the possible genetic control of the uterine estrogen receptors.

- This work was supported by a grant from the Margaret Duffy and Robert Cameron C. Troup Fund.
- A.O. Vladutiu and N.R. Rose, Science 174, 1137 (1971)
- D. Meruelo and M. Edidin, Proc. natl. Acad. Sci. USA 72, 2644 (1975).
- P. Ivanyi, K. Hampl, L. Starko and M. Mickova, Nature New Biol. 238, 280 (1972).
- P. Ivanyi, S. Gregorova, M. Mickova, Folia biol., Praha 18, 81
- K. Yamazaki, E.A. Boyse, V. Mike, H.T. Thaler, B.J. Mathieson, J. Abbott, J. Boyse, Z.A. Zayas and L. Thomas, J. exp. Med. 144, 324 (1976).
- A.S. Goldman, M. Katsumata, S.J. Yaffee and D.L. Gasser, Nature 265, 643 (1977)
- A.K. Champlin, D.L. Dorr and A.H. Gates, Biol Reprod. 8,
- R.B. Johnson, R.M. Nakamura and R.M. Libby, Clin. Chem. 21, 1725 (1975)
- O.H. Lowry, N.J. Rosenbrough, A.L. Farr and R.J. Randall, J. biol. Chem. 193, 265 (1951). G. Scatchard, Ann. N.Y. Acad. Sci. 51, 660 (1949).
- M. Ginsburg, N.J. MacLusky, I.D. Morris and P.J. Thomas, J. Endocr. 64, 443 (1975).
- P. Feherty, D.M. Robertson, H.B. Waynforth and A.E. Kallie, Biochem. J. 120, 837 (1970).
- C. Lee and H.J. Jacobson, Endocrinology 88, 596 (1971).
- J.O. White, S. Thrower and L. Lim, Biochem. J. 172, 37
- W.K. Whitten, J. Endocr. 13, 399 (1956).
- E.M. Håkansson and L. Östberg, Biochem. Genet. 14, 910 (1976).

Production and characterization of antibody against aflatoxin M₁

W.O. Harder and F.S. Chu^{1,2}

Department of Food Microbiology and Toxicology, University of Wisconsin, Madison (Wisconsin 53706, USA), 23 October

Summary. Antibody against aflatoxin M₁ was obtained after immunization of rabbits with bovine serum albumin-afla M₁ oxime conjugate. The antibody has greatest binding efficiency for afla M_1 , and was less efficient for afla B_1 . Cross-reaction of antibody with aflatoxin Q_1 , aflatoxicol, and aflatoxin B_{2a} was weak. Aflatoxin B_2 , G_1 , and G_2 and afla B_1 -guanine adduct showed almost no cross-reaction with the antibody. The sensitivity of the binding assay for aflatoxin M₁ detection is in the range of 1-10 ng per assay. Detailed methods for the preparation of the conjugate, production of immune serum, and methods for antibody determination are described.

Aflatoxin M_1 (afla M_1) is one of the major aflatoxin B_1 (afla B₁) metabolites in mammalian systems and has been shown in cow's milk, animal serum and urine³⁻⁵. It is also produced by several Aspergillus flavus isolates but in relatively small quantities in comparison with other aflatoxins⁶. In view of the occurrence of afla M1 in milk due to

ingestion of afla B₁-contaminated feed by cattle and its carcinogenic property, afla M₁ presents a potential hazard to human health⁷⁻⁹. It is essential to have simple, sensitive and reliable methods for monitoring afla M₁ in milk as well as other dairy products. Currently, both thin layer chromatography (TLC) and high pressure liquid chromatography (HPLC) are used for afla M₁ analysis with a lower detection limit of 0.1 ppb for fluid milk ¹⁰⁻¹³. A more sensitive method with a detection limit of 0.03 ppb has been reported ^{14,15} by employing 2-dimensional TLC. Investigations on new methods for mycotoxin analysis in our laboratory have been aimed at the radioimmunoassay (RIA). In the last few years, we have successfully obtained specific antibodies for afla B₁¹⁶, ochratoxin A¹⁷, and T-2 toxin ¹⁸, and have developed a solid-phase RIA for afla B₁¹⁹.

Since the molecular weights of aflatoxins are in the range of 312-320, aflatoxins are devoid of any antigenicity. The toxins also lack a reactive group for their direct coupling to a protein carrier in antibody production. However, a carboxymethyl oxime derivative of afla B₁ was made and has been used for conjugation to bovine serum albumin (BSA) and polylysine ^{16,20}. Specific antibody against afla B₁ was obtained from rabbits after immunization with the BSAafla B₁ or polylysine-afla B₁ conjugates. Nevertheless, antibody produced by this approach did not cross-react with afla $M_1^{16,19,20}$, and only gave weak cross-reactions with other afla B_1 metabolites such as aflatoxicol and afla Q_1^{16} . Those results suggested that in order to develop RIA for afla B₁ metabolites, the metabolite itself should be used as a hapten in the conjugation. Since afla M_1 is one of the most important afla B₁ metabolites, efforts for development of antibody against this toxin for RIA and other purposes were carried out. In this report, properties of and methods for production of this specific antibody are presented. As it will be seen from the specificity and sensitivity, the antibody will be useful in RIA for afla M₁.

Materials and methods. Aflatoxin M₁ was prepared by the method of Stubblefield et al.²¹. Aflatoxins B₁, B₂, G₁ and G₂ were prepared earlier²², and in some cases were further purified by the preparative TLC method. Aflatoxin B₁-guanine was kindly supplied by Dr R.C. Garner (University of York, York, England). ³H-afla B₁ (2.44 Ci/mmole) and ³H-afla M₁ (0.30 Ci/mmole) were obtained from

Fig. 1. Preparation of BSA-afla M₁-oxime conjugate.

Moravek Biochemicals (City of Industry, California 91745). Water-soluble carbodiimide 1-ethyl-3,3-dimethylamino-propyl-carbodiimide (EDPC) was obtained from Story Chemical Corp., Otta Chemical Division (Muskegon, Michigan). Bovine serum albumin (BSA) was a product of Sigma Chemicals (St. Louis, Missouri). Complete (Difco 3110-60-5) and incomplete (Difco 0639-60) Freund's adjuvant were purchased from Difco Laboratories (Detroit, Michigan). Albino rabbits were obtained from Klubertanz's rabbit farm (Edgerton, Wisconsin) and tested to be Pasteurella negative before use. All other chemicals were either reagent grade or chemically pure.

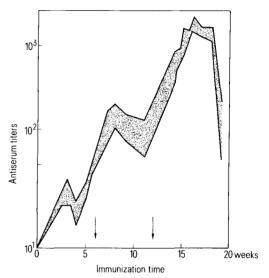


Fig. 2. Production of antibody against aflatoxin M_1 . Each rabbit was immunized with 250 µg of BSA-afla M_1 -oxime and given booster injections of equal concentrations (250 µg BSA-afla M_1 -oxime) at times indicated by arrows. Antisera titers are expressed as the reciprocal of serum dilution required for 50% binding of ³H-afla B_1 . The shaded area indicates the variation of antibody titers among 3 rabbits tested.

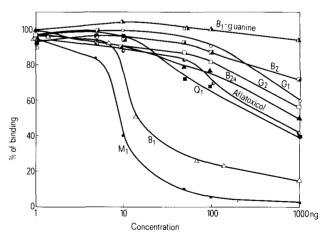


Fig. 3. Effect of different aflatoxins on the binding of 3 H-labelled afla B_{1} with IgG. 0.1 ml of diluted antisera (diluted to give 60% binding of 3 H-afla B_{1}) was incubated with 0.1 ml of 3 H-afla B_{1} (20–25,000 dpm) and 0.1 ml of different unlabelled aflatoxins at different concentrations at 6 ${}^{\circ}$ C overnight (20–24 h). All the solutions were prepared in 0.1 M NaPB at pH 7.4. The relative inhibition of binding of 3 H-afla B_{1} with the antibody by different concentrations of unlabelled aflatoxins is shown. All values have been normalized to 100% binding.

Preparation of afla M_1 -BSA conjugate. Aflatoxin M_1 was first converted to afla M_1 -O-carboxymethyl-oxime (afla M_1 -oxime) according to the method described by Chu et al. ²³. In the chloroform-acetone-acetic acid 50:50:10 solvent system, this preparation gives a single spot in TLC and has an R_f value = 0.43, which is different from the afla M_1 (R_f =0.90). Afla M_1 -oxime showed an absorption maximum at 350 nm with molar absorptivity of 21,475.

Antigens were prepared by conjugation of afla M₁-oxime with BSA in the presence of EDPC¹⁶. Details were similar to those previously described for the preparation of BSA-

afla B₁-oxime conjugate 16

Immunization schedule and antibody titer production. For immunization, the multiple-site intradermal method of Nieschlag et al. 16,24 was followed, except that the pertussis vaccine was omitted. Each rabbit received 250 µg of BSA-afla M₁ conjugate in Freund's complete adjuvant in the initial injection. Trial bleedings via the marginal ear vein were made once every week, starting 3 weeks after immunization. Booster injections were given approximately 1 week after a decrease in antibody titer was observed. The antigen was mixed with incomplete adjuvant for booster injections.

In the initial studies, binding of ³H-afla B₁ and ³H-afla M₁ with antisera were compared. Since the specific activity of ³H-afla B₁ is much higher than ³H-afla M₁, ³H-afla B₁ was

used as the ligand in the subsequent experiments.

Antibody titers were determined using a binding assay method¹⁶⁻¹⁸. Antiserum obtained from immunized rabbits was precipitated twice with (NH₄)₂SO₄ at a final saturation of 33.3%. The precipitate was redissolved in sufficient 0.01 M sodium phosphate buffer (NaPB), pH 7.4, to give a volume equal to that of the original serum sample. Appropriate dilutions (at least 3 serial dilutions) of the preparation were made for binding studies. In general, 0.1 ml of each diluted antibody solution was incubated with 0.2 ml of ³H-afla B₁ in 0.01 M NaPB, pH 7.4 (9000 cpm/0.2 ml), in a cold room in complete darkness overnight. After incubation, saturated (NH₄)₂SO₄ was added to each dilution to a final concentration of 40%. The mixture was allowed to stand 1 hour at room temperature in complete darkness. The samples were centrifuged (5000 rpm, 10 min), and the supernatant was decanted into scintillation vials. The precipitates were washed with 0.5 ml of a 40% (NH₄)₂SO₄ solution, centrifuged and decanted into the same vial as the 1st decant. The radioactivity of the combined washings was counted, along with at least 4 total count samples (³H-B₁, and NaPB). The degree of binding was determined. Antibody titer was defined as the reciprocal of the dilution which was required for 50% binding ³H-afla B₁ under the stated conditions.

Determination of specificity of M₁ antibody. The method was essentially the same as that used for titer determination except the reaction mixture which contains: 0.1 ml of diluted serum (diluted to give 60% binding), 0.1 ml ³H-afla B₁ (9000 cpm), and 0.1 ml of 0.01 M NaPB, pH 7.4, or unlabelled aflatoxins of different concentrations. The degree of displacement of radioactivity from the IgG-³H-afla B₁ complex was determined.

Determination of radioactivity. For radioactivity determinations, an appropriate amount of test solution, generally less than 1 ml, was mixed with 10 ml of Aquasol (New England Nuclear, Boston, MA). Radioactivity was counted in a Beckman Model LS-330 liquid scintillation spectrometer. All the counts were corrected to dpm by a channel ratio method using known standards of tritiated toluene. The counting efficiency was generally around 20-35%.

Results and discussion. Conjugation of afla M₁ to a protein carrier can be achieved by introducing a carboxylic acid group in the molecule through either succinylation of the

-OH group at the C-4 position or through the carbonyl group at the cyclopentenone ring to make a carboxymethyl oxime (figure 1). Because of limited availability of afla M, and of our previous experience 16, we have selected the latter approach. The results showed that approximately 5.5 moles of afla M₁ wxime were successfully coupled to 1 mole of BSA. Using the preparation as an antigen, antibody titers were demonstrated as early as 3 weeks after immunization. In the initial study, the binding of ³H-afla B₁ and ³H-afla M₁ with antisera were compared. At the same protein concentration, binding of ³H-afla M₁ with antisera was found almost twice as much as ³H-afla B₁. However, because the specific activity of ³H-afla M₁ is about 10 times less than ³H-afla B₁, the apparent binding of radioactivity by the antisera was higher when ³H-afla B₁ was used. Subsequently, we selected ³H-afla B₁ as the ligand in all the studies. Representative results for antibody production in 3 rabbits immunized with BSA-afla M₁ oxime are shown in figure 2. It is apparent that maximum antibody production was reached 3-5 weeks after each injection, and that production was greatly stimulated by each booster injection. Highest antibody titers were obtained 15-16 weeks after the initial injection followed by 2 booster injections. The specificity of antiserum against afla M₁ produced by rabbits after immunization with BSA-afla M₁ conjugate was determined by a competitive binding assay, and the results are shown in figure 3. Concentrations of different unlabelled aflatoxins to give 50% inhibition of binding of ³H-afla B₁ were found to be 8.5, 15.0, 440, 500, and 1000 ng for M_1 , B_1 , Q_1 , aflatoxicol, and B_{2a} , respectively. At 1000 ng tested, aflatoxins B_2 , G_1 , G_2 and afla B_1 -guanine adduct gave less than 5% inhibition. Thus, the antiserum is most specific for binding with afla M₁ than with other aflatoxins. It is interesting to note that antibody obtained from rabbits immunized with BSA-afla B₁ did not cross-react with afla M₁. However, when the rabbit was immunized with afla M₁, the antibody did cross-react with afla B₁. Thus the hydroxyl group in afla M₁ does play a significant role in determining the antibody specificity.

From the displacement curve, it is readily seen that sensitivity for afla M₁ detection falls in the range of 1.0-10 ng. This detection range is comparable to most other chemical methods ¹⁰⁻¹², but it is less sensitive than the RIA system for afla B₁, by which a minimum detection level of 0.1 ng per assay was reported ^{16,19,20}. Since ³H-afla B₁ was used in all the analyses, the sensitivity could be improved considerably if a high specific activity ³H-afla M₁ was available.

Present investigation indicates that antibody specifically against afla M₁ can be produced in rabbits according to the procedures reported herein, and that the specific antibody is adequate to be used in the RIA for affa M₁. Since the antibody did cross-react with afla B₁, the presence of high levels of afla B₁ together with M₁ would affect afla M₁ determination. This problem, however, could be readily resolved by the following 2 approaches: 1. Samples containing both afla B₁ and M₁ should be passed through a silica gel column according to the procedures of Stubblefield et al.21, so that M₁ and B₁ can be separated before RIA; or 2. Afla B₁ can be determined separately by a RIA technique using antibody specifically for B₁. To increase both specificity and sensitivity of RIA for afla M₁, further studies should be directed toward sample clean-up before RIA, application of RIA for afla M₁ in biological fluids and dairy products, as well as development of an afla M, ligand with a higher specific radioactivity.

Supported by the College of Agricultural and Life Sciences, North Central Regional project NC-129, the University of Wisconsin-Madison, and by Public Health Service research grant number CA 15064 from the National Cancer Institute, NIH.

- 2 The authors wish to thank Dr R.C. Garner for providing aflatoxin-B-guanine adduct, and Dr Dennis H. Hseih for providing aflatoxicol and aflatoxin Q1.
- R. Allcroft and R. B. A. Carnaghan, Vet. Rec. 75, 259 (1963).
- I.F.H. Purchase and L.J. Vorster, S. Afr. med. J. 42, 219 (1970).
- T.C. Campbell, and J.R. Hayes, Toxic. appl. Pharmac. 35, 199 (1976).
- C.W. Hesseltine, O.L. Shotwell, M.L. Smith, J.J. Ellis, E. Vandegraft and G.M. Shannon, in: Toxic Microorganism-mycotoxin, botulism, p.202. Ed. M. Herzberg. UJNR Joint Panel on Toxic Microorganisms and the Dept. of Interior, Washington 1968.
- L. Stoloff, in: Mycotoxins and other fungal related problems, p. 23. Ed. J. V. Rodricks. Am. Chem. Soc., Washington 1976.
- F. Kiermeier, G. Weiss, G. Behringer, M. Miller and K. Ranfft, Z. Lebensmittelunters. Forsch. 163, 171 (1977).
- F. Kiermeier, G. Weiss, G. Behringer and M. Miller, Z. Lebensmittelunters. Forsch. 163, 268 (1977).
- R.D. Stubblefield and G.M. Shannon, J. Ass. off. analyt. Chem. 57, 852 (1974).
- 11 M. Trucksess, J. Ass. off. analyt. Chem. 59, 722 (1976).

- 12 R.D. Stubblefield and O.L. Shotwell, J. Ass. off. analyt. Chem. 60, 784 (1977)
- L. Stoloff, J. Ass. off. analyt. Chem. 61, 340 (1978).
- L.G.M.Th. Tuinstra and J.M. Bronsgeest, J. Chromat. 111. 448 (1975).
- D.S. Patterson, E.M. Glaney and B.A. Roberts, Fd. Cosmet. Toxic. 16, 49 (1978)
- 16 F.S. Chu and I. Ueno, Appl. envir. Microbiol. 33, 1125 (1977).
 17 F.S. Chu, Fred C.C. Chang, and R.D. Hinsdill, Appl. envir. Microbiol, 31, 831 (1976).
- F.S. Chu, S. Grossman, R.D. Wei, and C.J. Mirocha, Appl. envir. Microbiol. 37, 104 (1979).
- P.S. Sun and F.S. Chu, J. Food Safety 1, 67 (1977).
- 20 J.J. Langone and H. Van Vunakis, J. natl Cancer Inst. 56, 591 (1976).
- 21 R.D. Stubblefield, G.M. Shannon and O.L. Shotwell, J. Am. Oil Chem. Soc. 47, 389 (1970).
- F.S. Chu, J. Ass. off. analyt. Chem. 54, 1304 (1971).
- F.S. Chu, M.T. Stephen Hsia and Piera Sun, J. Ass. off. analyt. Chem. 60, 791 (1977).
- E. Nieschlag, H. K. Kley, and K. H. Usadel, in: Steroid Immunoassay. Ed. E.H.D. Cameron, S.G. Hillier and K. Griffiths. Alpha Omega Publishing Ltd., Wales, U.K., 1975.

Serum proteins of mice with splenomegaly¹

H.C. Dung and Jen Yu

Department of Anatomy, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio (Texas 78284, USA), and Department of Physical Medicine and Rehabilitation, The University of Texas Healt Science Center at San Antonio, and Audie L. Murphy V.A. Hospital, San Antonio (Texas 78284, USA), 15 November 1978

Summary. Our earlier serum electrophoretic study in 'lethargic' mutant mice showed that the quantity of protein in 1 band is inversely related to the size of the spleen. In this study, we demonstrate that this protein band almost entirely disappears in mice with splenomegaly following spontaneous skin infection. The results suggest that this serum protein may play a role in regulating growth of lymphoid tissue.

In a study of serum proteins² from the 'lethargic' mouse, a neurological mutant^{3,4}, we noted that a protein band (designation) nated as band 2) showed a quantitative change inversely associated with the growth of lymphoid organs, particularly the spleen. This protein band was quantitatively small when the spleens of the mice were in a stage of rapid growth, and increased in quantity when the spleens decreased in weight². It was suggested that band 2 might contain a protein or proteins which act like a chalone to regulate lymphoid cell proliferation in the spleen.

To further substantiate our hypothesis, sera from other mice which exhibit splenomegaly have been studied electrophoretically using polyacrylamide gels (Bio-Rad Laboratories, Richmond, Cal.). The mice studied show an obvious splenomegaly associated with a skin infection. Etiology of the skin infection is not known; it occurs in approximately 25% of the phenotypically normal mice of our breeding colony over 4 months of age but is very rare in 'lethargic' animals. Mice in the colony have been brothersister inbred for more than 13 years (over 60 generations). The infection invariably begins as a small superficial lesion over the scapular region. At this early stage, the spleens of the mice appear to be normal in size and weight. The skin lesion gradually extends to other dorsal regions of the body and erodes deeply resulting in sloughing of the fur and skin.(figure 1). Mice with the skin infection usually die in 3 months; however, some of them survive as long as 8 months after the onset of the infection.

Materials and methods. Sera were collected from 13 mice (5 males and 8 females) with normally appearing skin (control group), and 14 mice (5 males and 9 females) with skin infections (infected group) that were present from 2 to 5 weeks before blood collection. The mice were 5-7 months old at the time of sacrifice. Body and spleen weights of the mice at the time of sacrifice are summarized in table 1.

Table 1. Body and spleen weights of mice used for serum electrophoretic analysis

	Control	Infected	Statistical difference*		
No. of mice	12	13			
Body weight (g)	$36.4 \pm 0.3**$	35.3 ± 1.1	NS		
Spleen weight (mg)	104.7 ± 3.6	634 ± 147.4	p < 0.001		

^{*} Student's t-test; ** mean ± SE.

Table 2. Percentage of 11 different protein bands from mouse sera separated by polyacrylamide gel electrophoresis

	Protein band (% of total gel OD)										
	1	2	3	4	5	6	7	8	9	10	11
Control group	45.9** ± 2.6	13.1 ± 1.4	4.4 ± 0.2	14.6 ± 1.9	2.8 ± 0.3	4.3 ± 0.3	3.0 ± 0.4	2.6 ± 0.4	1.9 ± 0.3	6.0 ± 1.2	1.4 ± 0.2
Infected group	48.9 ± 5.8	5.0 ± 1.0	5.3 ± 1.1	16.3 ± 3.3	3.0 ± 0.4	4.1 ± 0.5	4.4 ± 0.7	3.6 ± 0.5	2.7 ± 0.4	5.8 ± 0.4	1.0 ± 0.2
Statistical difference*	NS	< 0.001	NS	NS	NS	NS	NS	NS	NS	NS	NS

^{*} Student's t-test; ** mean \pm SE; NS = no significance.